Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology.
نویسندگان
چکیده
Species diversity is promoted and maintained by ecological and evolutionary processes operating on species attributes through space and time. The degree to which variability in species function regulates distribution and promotes coexistence of species has been debated. Previous work has attempted to quantify the relative importance of species function by using phylogenetic relatedness as a proxy for functional similarity. The key assumption of this approach is that function is phylogenetically conserved. If this assumption is supported, then the phylogenetic dispersion in a community should mirror the functional dispersion. Here we quantify functional trait dispersion along several key axes of tree life-history variation and on multiple spatial scales in a Neotropical dry-forest community. We next compare these results to previously reported patterns of phylogenetic dispersion in this same forest. We find that, at small spatial scales, coexisting species are typically more functionally clustered than expected, but traits related to adult and regeneration niches are overdispersed. This outcome was repeated when the analyses were stratified by size class. Some of the trait dispersion results stand in contrast to the previously reported phylogenetic dispersion results. In order to address this inconsistency we examined the strength of phylogenetic signal in traits at different depths in the phylogeny. We argue that: (1) while phylogenetic relatedness may be a good general multivariate proxy for ecological similarity, it may have a reduced capacity to depict the functional mechanisms behind species coexistence when coexisting species simultaneously converge and diverge in function; and (2) the previously used metric of phylogenetic signal provided erroneous inferences about trait dispersion when married with patterns of phylogenetic dispersion.
منابع مشابه
Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly.
The relative importance of competition vs. environmental filtering in the assembly of communities is commonly inferred from their functional and phylogenetic structure, on the grounds that similar species compete most strongly for resources and are therefore less likely to coexist locally. This approach ignores the possibility that competitive effects can be determined by relative positions of ...
متن کاملUsing phylogeny and functional traits for assessing community assembly along environmental gradients: A deterministic process driven by elevation
Community assembly processes is the primary focus of community ecology. Using phylogenetic-based and functional trait-based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat en...
متن کاملMechanisms underlying local functional and phylogenetic beta diversity in two temperate forests.
Although trait information has been widely used to explore underlying mechanisms of forest community structure, most studies have focused on local patterns of phylogenetic or functional alpha diversity. Investigations of functional beta diversity, on the other hand, have not been conducted at local scales in a spatially explicit way. In this study, we provide a powerful methodology based on rec...
متن کاملTrait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly.
Ecology Letters (2010) 13: 1503-1514 ABSTRACT: The phylogenetic structure and distribution of functional traits in a community can provide insights into community assembly processes. However, these insights are sensitive to the spatial scale of analysis. Here, we use spatially explicit, neighbourhood models of tree growth and survival for 19 tree species, a highly resolved molecular phylogeny a...
متن کاملSeasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities
Neotropical rainforests sustain some of the most diverse terrestrial communities on Earth. Euglossine (or orchid) bees are a diverse lineage of insect pollinators distributed throughout the American tropics, where they provide pollination services to a staggering diversity of flowering plant taxa. Elucidating the seasonal patterns of phylogenetic assembly and functional trait diversity of bee c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ecology
دوره 90 8 شماره
صفحات -
تاریخ انتشار 2009